Rechercher des projets européens

Ubiquitous optical FIbre NErves (U-FINE)
Date du début: 1 déc. 2012, Date de fin: 30 nov. 2017 PROJET  TERMINÉ 

"Distributed fibre sensors have become a widely used tool for critical asset monitoring in civil engineering and energy transport. Beyond these specific fields, little or no application has been found for these sensors. The aim of U-FINE is to develop a new class of multi-scale distributed optical fibre sensors that would find use in a wide range of new application domains ranging from biomechanics to smart grids.The state-of-the-art of conventional distributed fibre sensors is to measure quantities such as temperature or deformation with a spatial resolution of 1 meter over 30 km. This corresponds to 30’000 resolved distinct measurement points with a single interrogation unit and a single optical cable. The realistic ambition of this project is to radically change the interrogation methods available and be able to resolve up to 1’000’000 points. This will be done by either bringing the spatial resolution below 1 cm (still preserving kilometre ranges) and/or by extending the measuring range beyond 200 km (still preserving resolutions of 1-2 meter). Furthermore, we also aim at reducing the acquisition time of these systems in approximately two orders of magnitude, and demonstrating new architectures capable of addressing hundreds of fibre sections in a complex network with a single interrogation unit and passive network devices.To achieve these performances, merely improving present-day systems is completely insufficient. Completely new interrogation schemes have to be developed. We believe that this project has good solutions for all the above challenges.To assess the developed technology in realistic conditions, field tests of the developed systems are envisaged towards the end of this project. . In addition to this, with the knowledge acquired through the accomplishment of these basic objectives, we will also pursue the demonstration of the use of distributed fibre sensing systems as high-resolution wearable sensors for ambulatory analysis of human movement."