Up2Europe est un accélérateur d’idées pour des projets de coopération.
La plateforme Ma Région Sud fait partie de l'écosystème de Up2Europe qui permet de booster la coopération à un niveau supérieur!
Besoin d'aide ? La Région Sud vous accompagne
Laissez-vous guider par notre équipe d'experts ! Saisissez votre mail et nous reviendrons vers vous rapidement
The Quantum Geometric Langlands Topological Field .. (QuantGeomLangTFT)
The Quantum Geometric Langlands Topological Field Theory
(QuantGeomLangTFT)
Date du début: 1 juin 2015,
Date de fin: 31 mai 2020
PROJET
TERMINÉ
We will use modern techniques in derived algebraic geometry, topological field theory and quantum groups to construct quantizations of character varieties, moduli spaces parameterizing G-bundles with flat connection on a surface. We will leverage our construction to shine new light on the geometric representation theory of quantum groups and double affine Hecke algebras (DAHA's), and to produce new invariants of knots and 3-manifolds.Our previous research has uncovered strong evidence for the existence of a novel construction of quantum differential operators -- and their extension to higher genus surfaces -- in terms of a four-dimensional topological field theory, which we have dubbed the Quantum Geometric Langlands (QGL) theory. By construction, the QGL theory of a surface yields a quantization of its character variety; quantum differential operators form just the first interesting example. We thus propose the following long-term projects:1. Build higher genus analogs of DAHA's, equipped with mapping class group actions -- thereby solving a long open problem -- by computing QGL theory of arbitrary surfaces; recover quantum differential operators and the (non-degenerate, spherical) DAHA of G, respectively, from the once-punctured and closed two-torus.2. Obtain a unified construction of both the quantized A-polynomial and the Oblomkov-Rasmussen-Shende invariants, two celebrated -- and previously unrelated -- conjectural knot invariants which have received a great deal of attention.3. By studying special features of our construction when the quantization parameter is a root of unity, realize the Verlinde algebra as a module over the DAHA, shedding new light on fundamental results of Cherednik and Witten.4. Develop genus one, and higher, quantum Springer theory -- a geometric approach to constructing representations of quantum algebras -- with deep connections to rational and elliptic Springer theory, and geometric Langlands program.
Accédez au prémier réseau pour la cooperation européenne
Se connecter
Bonjour, vous êtes sur la plateforme Région Sud Provence-Alpes-Côte d’Azur dédiée aux programmes thématiques et de coopération territoriale. Une équipe d’experts vous accompagne dans vos recherches de financements.
Contactez-nous !
Contactez la Région Sud Provence-Alpes-Côte d'Azur
Vous pouvez nous écrire en Anglais, Français et Italien