Rechercher des projets européens

Self-Assembly in Confined Space (SACS)
Date du début: 1 nov. 2012, Date de fin: 31 oct. 2016 PROJET  TERMINÉ 

Supramolecular chemistry studies chemistry beyond individual molecules, where molecules or macromolecules form larger entities by spontaneous self-assembly or by self-organisation. The resulting supramolecular architectures are held together by covalent bonds and a variety of non-covalent intermolecular interactions (hydrogen bonding, metal coordination, hydrophobic interactions etc). Spatially, the supramolecular systems can extend from a few nm to micron size or beyond, in 1, 2 or 3 dimensions, with hierarchical structures containing organisation at distinct characteristic length scales. Consequently, one can control and guide not only the chemical properties of supramolecular systems, such as adsorption affinity, reactivity or catalytic activity, but also the physical properties (mechanical, electrical, optical etc.) with spatial resolution, at different length scales and in different directions. Therefore, supramolecular systems have a potential functionality which tremendously surpasses the scope of classical molecular systems in the liquid state, or of classical porous solids. This potential functionality encompasses the type and number of functions which can simultaneously be fulfilled, as well as the range of viable operating conditions. While the variety of „functions‟ for supramolecular systems is only limited by the imagination of the supramolecular chemist, SACS focuses on the formation, via self assembly, of functional structures in restricted or controlled space to gain new properties resulting from the confinement and to enable the formation of assemblies with controlled geometries as well as size and shape and outstanding properties.

Coordinateur

Details

9 Participants partenaires