Rechercher des projets européens

RECEPTivity and amplitude-based transition prediction (RECEPT)
Date du début: 1 févr. 2011, Date de fin: 30 avr. 2015 PROJET  TERMINÉ 

"The RECEPT project will deliver upstream aerodynamics research that will contribute (i) to the drive to strengthen the competitiveness of European manufacturing industry, (ii) to the need to improve the environmental impact of aircraft with regards to emissions.Within the RECEPT project, knowledge about transition phenomena and theoretical/numerical tools obtained during the last 50 years since the eN method was proposed, are used to develop the next generation transition prediction methods. The new method will be an amplitude-based prediction method incorporating true effects of the disturbance environment of the incoming flow, the so called receptivity process, as well as knowledge about actual amplitudes at which disturbances breakdown to turbulence. This will largely remove the need for empirical correlations and render possible accurate prediction of the onset of transition both under wind tunnel and free-flight conditions.Proposed research activities within RECEPT project will also contribute to design of more advanced transition control devices. Consequently, it will contribute to achieving the objectives for technology readiness to reduce fuel consumption and hence emissions. It directly addresses the topic of AAT.2010.1.1.1, AAT.2010.4.1.1 and AAT.2010.4.2.1.The RECEPT consortium consists of 12 organisations from 4 different member states (Sweden, Italy, France Germany) and one of International Cooperation Partner Countries, Russia. It contains 3 aircraft manufacturers (Airbus, SAAB, Piaggio), 5 research organisations (CIRA, DLR, FOI, ITAM, ONERA) and 4 universities (Kungliga Teknika Högskolan, Università di Genova, Università di Salerno, Universität Stuttgart). Participation of industry will directly transfer the new knowledge and greatly improved method to the more applied work to be performed within the Joint Technology Initiative – Clean Sky."

Coordinateur

Details

11 Participants partenaires