Rechercher des projets européens

Quantum fields and Curvature--Novel Constructive Approach via Operator Product Expansion (QC&C)
Date du début: 1 avr. 2011, Date de fin: 31 mars 2016 PROJET  TERMINÉ 

"It was realized already from the beginning that the theory of quantized fields (QFT) does not easily fit into known mathematical structures, and the quest for a satisfactory mathematical foundation continues to-day. Parts of this theory have already been tremendously successful, e.g. in the quantitative description of elementary particles, and ideas from QFT have revolutionized entire fields of mathematics. But the non-perturbative construction of the most important QFT s, namely renormalizable theories in 4d, remains unsolved. The aim of this project is to make a substantial contribution to this quest for the mathematical construction of such QFT s (on curved manifolds), and the exploration of their mathematical structure. We want to pursue a novel ansatz to achieve this goal. The essence of our novel approach is to focus attention on the algebraic backbone of the theory, which manifests itself in the so-called operator-product-expansion. The study of such algebraic structures related to operator products has already been tremendously useful in the study of conformal field theories in low dimensions, but we here propose that a suitable version of it also has great potential to be used as a constructive tool for the much more complicated quantum gauge theories in four dimensions. It is not expected that an explicit solution can be obtained for such models-especially so in curved space-but the idea is instead to analyze powerful consistency conditions on the quantum field theory arising from the OPE ( associativity conditions ) and to use them to prove that the theory exists in a mathematically rigorous sense. Our approach will be complemented by other powerful and deep mathematical tools that have been developed over the past decades, such as the sophisticated non-perturbative expansions uncovered in the school of constructive quantum fields theory , Hochschild cohomology, RG-flow equation techniques, microlocal analysis, curvature expansions, and many more."

Details

1 Participants partenaires