Rechercher des projets européens

New multipurpose coating systems based on novel particle technology for extreme environments at high temperatures (PARTICOAT)
Date du début: 1 nov. 2008, Date de fin: 31 oct. 2012 PROJET  TERMINÉ 

The overall objective of the project is to develop a novel, unconventional and cost efficient type of multipurpose high temperature coating systems on the basis of property tailoring by particle size processing of metallic source materials. It shall possess multi-functionality that will comprise thermal barrier effect, oxidation and corrosion protection, lotus effect, electrical insulation at elevated temperatures and fire protection. The concept of the novel approach to protection of surfaces is a coating consisting in its initial state of nano- and/or micro-scaled metal particles with a defined size, deposited by spraying, brushing, dipping or sol-gel. During the heat treatment, the binder is expelled, bonding to the substrate surface achieved, the metallic particles sinter and oxidise completely resulting in hollow oxide spheres that form a quasi-foam structure. Simultaneously, a diffusion layer is formed below the coating serving as a corrosion protection layer and as a bond coat for the top layer. The structure of the coating system shall be adjusted by parameters like selection of source metal/alloy, particle size, substrate, binder and a defined heat treatment. For fire protection the formation of hollow oxide spheres will be processed in a separate step before deposition. The flexibility of the new coatings integrates a wide field of application areas, such as gas and steam turbines in electric power generation and aero-engines, combustion chambers, boilers, steam generators and super-heaters, waste incineration, fire protection of composite materials in construction as well as reactors in chemical and petrochemical industry. A broad impact will thus be ensured increasing safety and the durability of components by an economic, multifunctional and flexible protection of their surfaces. The novelty will provide a real step change in the understanding of materials degradation mechanisms in extreme environments.

Coordinateur

Details

Projet Website

14 Participants partenaires