Rechercher des projets européens

Nanoparticles in Food: Analytical methods for detection and characterisation (NanoLyse)
Date du début: 1 janv. 2010, Date de fin: 30 sept. 2013 PROJET  TERMINÉ 

The NanoLyse project will focus on the development of validated methods and reference materials for the analysis of engineered nano-particles (ENP) in food and beverages. The developed methods will cover all relevant classes of ENP with reported or expected food and food contact material applications, i.e. metal, metal oxide/silicate, surface functionalised and organic encapsulate (colloidal/micelle type) ENP. Priority ENPs have been selected out of each class as model particles to demonstrate the applicability of the developed approaches, e.g. nano-silver, nano-silica, an organically surface modified nano-clay and organic nano-encapsulates. Priority will be given to methods which can be implemented in existing food analysis laboratories. A dual approach will be followed. Rapid imaging and screening methods will allow the distinction between samples which contain ENP and those that do not. These methods will be characterised by minimal sample preparation, cost-efficiency, high throughput and will be achieved by the application of automated smart electron microscopy imaging and screening techniques in sensor and immunochemical formats. More sophisticated, hyphenated methods will allow the unambiguous characterisation and quantification of ENP. These will include elaborate sample preparation, separation by flow field fractionation and chromatographic techniques as well as mass spectrometric and electron microscopic characterisation techniques. The developed methods will be validated using the well characterised food matrix reference materials that will be produced within the project. Small-scale interlaboratory method performance studies and the analysis of a few commercially available products claiming or suspect to contain ENP will demonstrate the applicability and soundness of the developed methods.

Coordinateur

Details

Projet Website

9 Participants partenaires