Rechercher des projets européens

Nanomechanics of defects in solids: applications to nanolayers, nanoparticles, nanocrystals and biomaterials (Materials Nanomech)
Date du début: 17 déc. 2011, Date de fin: 16 sept. 2012 PROJET  TERMINÉ 

The aim of the proposed project is to continue the research on a general nanomechanics of defects framework for the understanding and prediction of structure-properties relationships of nanoscale materials. This framework has to be suitable for metal nanoparticles and nanorods, nanolayered films and core/shell nanowires, ultrafine grained bulk nanostructures, as well as carbon nanotubes and protein membrane nanotubes. While standard continuum mechanics and dislocation theory have been useful tools for addressing scientific and technological problems at macro and meso scales, their direct use is not suitable for nanoscale problems. Molecular dynamics simulations and their variants is a commonly used approach but also prohibitively expensive for realistic applications due to current computational limitations. The proposed project serves as a compromising alternative by developing a new methodology for understanding the evolution and stability of structural defects at nanosized volumes and advancing new continuum nanoelasticity and nanoplasticity models for capturing the deformation and fracture behavior of nanosized objects, devices and components. The results will be applicable to a variety of nanoscience and nanotechnology areas, including micro/nano opto-electronics, micro/nano electromechanical systems, bulk nanostructured metal processing and forming. For the last objects, i.e. bulk nanostructured materials, experimental studies of their fracture and plastic behavior will be conducted to support the developed theory.

Coordinateur

Details