Rechercher des projets européens

Multiscale mathematical modelling of dynamics of structure formation in cell systems (BioStruct)
Date du début: 1 sept. 2008, Date de fin: 31 août 2013 PROJET  TERMINÉ 

The aim of this transdisciplinary project is to develop and analyse multiscale mathematical models of pattern formation in multicellular systems controlled by the dynamics of intracellular signalling pathways and cell-to-cell communication and to develop new mathematical methods for the modelling of such complex processes. This aim will be achieved through a close collaboration with experimental groups and comprehensive analytical investigations of the mathematical problems arising in the modelling of these biological processes. The mathematical methods and techniques to be employed will be the analysis of systems of partial differential equations, asymptotic analysis, as well as methods of dynamical systems. These techniques will be used to formulate the models and to study the spatio-temporal behaviour of solutions, especially stability and dependence on characteristic scales, geometry, initial data and key parameters. Advanced numerical methods will be applied to simulate the models. This comprehensive methodology goes beyond the state-of-the-art, since usually the analyses are limited to a single aspect of model behaviour. Groundbreaking impacts envisioned are threefold: (i) The project will contribute to the understanding of mechanisms of structure formation in the developmental process, in the context of recently discovered signalling pathways. In addition, some of the factors and mechanisms playing a role in developmental processes, such as Wnt signalling, are implicated in carcinogenesis, for instance colon and lung cancer. (ii) Accurate quantitative and predictive mathematical models of cell proliferation and differentiation are important for the control of tumour growth and tissue egeneration; (iii) Qualitative analysis of multiscale mathematical models of biological phenomena generates challenging mathematical problems and, therefore, the project will lead to the development of new mathematical theories and tools.

Details