Rechercher des projets européens

MultidomaiN plAtform for iNtegrated MOre-tHan-MoorE/Beyond CMOS systems charActerisation & diagnosTics (NANOHEAT)
Date du début: 1 oct. 2012, Date de fin: 31 janv. 2016 PROJET  TERMINÉ 

Description Develop, deliver and validate a miniaturized and integrated platform for advanced thermal, electrical and chemical analysis at the nanoscale.The principle goal of the NANOHEAT project is to develop, deliver and validate a miniaturized and integrated platform which provides a multidimensional nanoprobing platform for advanced thermal analysis at the nanoscale. For advanced nano-devices or Beyond-CMOS structures (sub-40nm transistors, SETs, graphene structures etc.) there is a deep shortage of versatile, multidomain tools capable of analysing phenomena occurring at a nanoscale. The family of AFM-based techniques provides various nanoscale observation capabilities restricted however to dedicated, particular phenomena. Moreover, available AFM systems do not allow for easy "domain-mixing" as well as for combination of large distance and nanoscale positioning precision. These techniques are not useful as in-line monitoring tools. The multi-functional system of independently controlled AFM-based nanoprobes, equipped with dedicated (FIB functionalized) tips and actuators that is developed within the NANOHEAT project, will allow for multi-domain diagnostics of nanoelectronic, nanophotonic and bio-electronic devices. The proposed system will allow to observe thermal, electrical (e.g. potential) or even chemical (e.g. electrochemical) properties at the nanoscale. It will also have in-line (on wafer) diagnostics capabilities. The consortium is composed of three R&D institutes, four university teams and two SMEs providing a mixture of a complementary expertise related to micro-engineering, design and technology of micro/nano-devices and systems, design and manufacturing of measurement and control electronics, modelling and simulation, material science and physics. Besides, four partners have expertise and potential required for validation of the developed system for specific applications. In addition the coordinator of the project, ITE is a leading Polish research centre active in the micro/nanoelectronic, micro/nano-system and photonic domains.

Coordinateur

Details

10 Participants partenaires