Rechercher des projets européens

Long Beamtime Experiments for Nuclear Astrophysics (LOBENA)
Date du début: 1 nov. 2012, Date de fin: 31 oct. 2018 PROJET  TERMINÉ 

The goal of LOBENA is to measure key properties needed for understanding nuclear processes in the Cosmos. Nuclear Astrophysics plays a key role in our quest to understand the origin and distribution of the chemical elements in our galaxy. Nuclear processes are crucial for understanding the energy production in the universe and are essential for describing the creation of chemical elements from the ashes of the Big Bang. Uncertainties in the nuclear physics can therefore influence our understanding of many astrophysical processes, both those involving stable stellar burning phases and explosive phenomena such as X-ray bursts, gamma-ray bursts and supernovae.In LOBENA (LOng Beamtime Experiments for Nuclear Astrophysics) I will initiate a series of studies in Nuclear Astrophysics, which have in common the need for long beam times and the use of complete kinematics detection of several particles emitted in reactions. The core of the project will focus on the systems 8Be, 12C and 16O where today key open questions of great importance remain to answered. These questions can be addressed by reactions induced by low energy (<5MeV) beams of protons and 3He on light targets such as 6,7Li, 9Be, 10,11B and 19F using a newly developed complete kinematics detection procedure. The department of Physics and Astronomy in Aarhus provides a unique scene for doing these measurements since it provides accelerators where long beam time can be guarantied. LOBENA will also include complimentary experiments at international user facilities such as ISOLDE (CERN), KVI (Groningen), JYFL and (Jyväskylä).With this ERC starting grant proposal I wish to start up my own group around Nuclear Astrophysics experiments in house and at international user facilities. With two Post Doc.s and a Ph.D. I will be much better able to fully exploit the scientific potential of the proposed research, which will also help to consolidate my own research career and give me more independence.