Rechercher des projets européens

Innovative Nanostructured Optochemical Sensors (INgENiOuS)
Date du début: 1 oct. 2009, Date de fin: 30 sept. 2012 PROJET  TERMINÉ 

Polycyclic Aromatic Hydrocarbons (PAH’s) and VOCs like benzene, toluene and xylenes (BTX) are compounds of great social and environmental significance, are widely used in industry, in many different applications. However, they and can present serious medical, environmental, and explosion dangers. Because they are toxic even at parts per- billion concentrations, it is essential to know their concentration in the air, especially in industrial and populated areas. Measurement of these toxic compounds at trace levels in multi analyte mixtures is still a challenging task however, and involves the use of expensive laboratory bound equipment. This severely limits risk analysis and timely initiation of preventive measures in a working environment. The main objective of the INGENIOUS project is the development, evaluation and validation of novel ultra-sensitive and selective nanostructured optochemical sensors for the detection of PAHs (polycyclic aromatic hydrocarbons) and BTX (benzene, toluene, xylene) from complex mixtures. Within the sensor concept, nanoparticle-based materials with high selectivity and sensitivity will be created by combining principles of molecular imprinting and plasmonic enhancement of molecular fluorescence. Silica and polymer core-shell nanoparticles with molecularly imprinted shells will be used as building blocks of self-assembling colloidal aggregates acting as chemosensing elements. The sensing elements and microarrays of sensing elements will be obtained using modern printing technologies such as ink-jet and microcontact printing. The combined sensor elements will be implemented on a polymer foil format and validated as sensor transducers. The technology will be incorporated into an in-plane optical read-out platform and demonstrated for specific end user applications. The suggested approach will be used to create sensor devices capable of detecting relevant analytes in industrial processes, occupational health and plants safety like PAH



Projet Website

3 Participants partenaires