Rechercher des projets européens

Glioblastoma Inhibition: Targeting Tumour-derived Extracellular-Vesicle Driven Cell-Recruitment (GLITTER)
Date du début: 1 févr. 2014, Date de fin: 31 janv. 2019 PROJET  TERMINÉ 

"Glioblastomas (GBMs) are malignant brain tumours and among the most aggressive human cancers. GBMs patients have an extremely poor survival rate due to a complete absence of adequate therapies capable of efficiently targeting GBM cells inside the brain. Recently, we demonstrated that GBM cells release pro-tumoural extracellular vesicles (EVs) into the bloodstream, which emerged as important intermediates in communication with distant peripheral cells in the body. Of note, the distribution of GBM-derived EVs can now be monitored in vivo by employing a novel Cre/LoxP mouse reporter model. This sophisticated imaging model enables the visualisation of normal peripheral cells that have taken up circulating GBM-derived EVs and allows for subsequent tracking of the recruitment of these cells to the tumour. Recent studies have shown that GBM-derived EVs have the capability to manipulate non-neoplastic cells, exploiting them for tumour expansion. Moreover, we have preliminary evidence that GBM-derived EV receptor pathways can be identified and blocked, possibly causing stagnation of GBM tumour growth by preventing recruitment of essential support cells. We aim at identifying these pathways using unbiased RNAi screening, followed by interference with pro-tumoural cell recruitment, using small molecule drugs in our GBM in vivo models. Finally, circulating GBM-derived EVs and their RNA content are also efficiently captured and internalised by blood platelets (PLTs) that can act as efficient EV carriers. Hence, tumour-derived RNA in circulating EVs and PLTs, isolated from the blood of GBM mouse models and patients, may serve as non-invasive biomarkers and companion diagnostics platform. GLITTER aims to; 1) Analyse in detail the EV-driven recruitment and signalling of essential GBM support cells; 2) Halt GBM tumour growth by interference with EV-mediated recruitment of pro-tumoural non-neoplastic cells; 3) Validate the EV/PLT-based diagnostic platform."

Coordinateur

Details