Rechercher des projets européens

Functional Biosupramolecular Systems: Photosystems and Sensors (FUBSSY)
Date du début: 1 janv. 2011, Date de fin: 31 déc. 2015 PROJET  TERMINÉ 

"The general objective of this proposal is to discover access to ordered, soft and smart matter for use in materials sciences (e.g. molecular optoelectronics, organic solar cells), biology, medicine and chemistry.Specific aim 1 focuses on two complementary approaches (zipper assembly; self-organizing surface-initiated polymerization, SOSIP) to build artificial photosystems on solid surfaces, including supramolecular n/p-heterojunctions with oriented multicolor antiparallel redox gradients (“OMARG-SHJs”).Specific aim 2 is to create sensing systems in lipid bilayers that operate by pattern recognition with polyion/counterion complexes, and to apply the lessons learned to several interconnected topics (diagnostics, fluorescent membrane/nitrate probes, cellular uptake, organocatalysis with anion-À interactions).To address these challenges, crossfertilization at the interface of synthetic, supramolecular, biological and materials chemistry will be essential. To produce the broad horizons needed for crossfertilization, projects on different topics are run in parallel. The proposed approach builds in general on the distinguishing expertise of the (organic) chemist to create new matter, i.e., multistep organic synthesis. To identify significant, that is responsive or “smart” systems, the invention of functional feedback loops will be emphasized.Success with aim 1 will provide general solutions to key problems (OMARG-SHJs, SOSIP) and thus lead to broad applications (including high-efficiency organic photovoltaics and dye-sensitized solar cells). Success with aim 2 will afford synthetic sensing systems that operate, closer than ever, like the membrane-based mammalian olfactory and gustatory systems and open new approaches to crossdisciplinary topics as specified above."

Details