Up2Europe est un accélérateur d’idées pour des projets de coopération.
La plateforme Ma Région Sud fait partie de l'écosystème de Up2Europe qui permet de booster la coopération à un niveau supérieur!
Besoin d'aide ? La Région Sud vous accompagne
Laissez-vous guider par notre équipe d'experts ! Saisissez votre mail et nous reviendrons vers vous rapidement
Frobenius Manifolds and Hamiltonian Partial Differ.. (FROM-PDE)
Frobenius Manifolds and Hamiltonian Partial Differential Equations
(FROM-PDE)
Date du début: 1 janv. 2009,
Date de fin: 31 déc. 2013
PROJET
TERMINÉ
The basic idea of the project is to apply methods and results of the theory of integrable systems to non-integrable PDEs. We do not promise to solve any PDE; however, in certain strongly nonlinear regimes, solutions to a conservative non-integrable PDE exhibit integrable behaviour. The realization of this idea, supported by some preliminary analytical and numerical results, will consist of three main tasks: 1) classify normal forms of quasilinear Hamiltonian PDEs and their perturbations; 2) reduce the lists of asymptotic solutions to an abridged list of universal forms represented via Painlevé transcendents, theta-functions, etc.; 3) establish matching rules between the universal asymptotic expansions. Differential-geometric methods based on the theory of Frobenius manifolds will be crucial in solving the classification problems; analytic and algebro-geometric techniques applied to the Hurwitz spaces of Riemann surfaces will be instrumental in the description of nonlinear oscillatory regimes; selected solutions to Painlevé equations and their generalizations will be needed for the analytic description of transitions from regular to oscillatory behaviour. The project is aiming at creation of an online library of the main qualitative types of behaviour of solutions to large classes of nonlinear evolutionary PDEs supplied with analytic expressions, numerical codes and visualization tools, as well as with tests of existence of a Hamiltonian structure, integrability or almost integrability. Such a library will both stimulate the research in the field and lead to a high visibility of the project.
Accédez au prémier réseau pour la cooperation européenne
Se connecter
Bonjour, vous êtes sur la plateforme Région Sud Provence-Alpes-Côte d’Azur dédiée aux programmes thématiques et de coopération territoriale. Une équipe d’experts vous accompagne dans vos recherches de financements.
Contactez-nous !
Contactez la Région Sud Provence-Alpes-Côte d'Azur
Vous pouvez nous écrire en Anglais, Français et Italien