Rechercher des projets européens

Exciton-polaritons in microcavities: physics and devices (CLERMONT4)
Date du début: 1 sept. 2009, Date de fin: 31 août 2013 PROJET  TERMINÉ 

The discovery of Bose-Einstein condensation (BEC) of exciton-polaritons in 2006 and the demonstration of room-temperature polariton lasing in 2007 have opened the way to realisation of a new generation of optoelectronic devices referred to as polariton devices. The research on exciton-polaritons and polaritonics allows the quantum effects of superfluidity, entanglement, squeezing of light to be brought to the everyday life and used in new light sources, optical switches, modulators and memory elements. The fundamental principles of polariton physics have been established by our previous networks "CLERMONT" and "CLERMONT2" within the 5th and 6th FP. The breakthrough achieved in 2006-2007 brings the polaritonics on a new level and makes its rapid development in Europe an overall strategic priority. Our present consortium composed by 10 European academic teams and supported by 6 leading industrial groups has a critical mass in polariton physics and technology. We intend to form a new generation of solid state physicists able to maintain the European leadership in this rapidly developing interdisciplinary research field. Four of the present partners took part in the discovery of the BEC of polaritons and polariton lasing, six others have given key contributions into polaritonics over the last decade. The Coordinator of the project holds the Marie Curie Chair of Excellence "Polariton Devices" at the university of Rome. We propose 16 full term PhD and 3 postdoc projects to be realized at two network nodes each with a compulsary training in industry. We shall organize the international conference on Optics of Excitons in Confined Systems in 2009, 3 international conferences on Physics of Light-Matter Coupling in Nanostructures and 2 Summer Schools on Nanophotonics. The project will form a world-leading international team of researchers capable to implement the ideas of polaritonics in a new generation of optoelectronic devices.

Coordinateur

Details

9 Participants partenaires