Rechercher des projets européens

Effective redesign of oxidative enzymes for green chemistry (OXYGREEN)
Date du début: 1 mai 2008, Date de fin: 30 avr. 2013 PROJET  TERMINÉ 

"Enzymes are extremely powerful natural catalysts able to perform almost any type of chemical reaction while being mild by nature and highly specific. In fact, the delicate functioning of enzymes forms the basis of every living creature. The catalytic potential of enzymes is more and more appreciated by the industry as many industrial processes rely on these sophisticated catalysts. However, the number of reactions catalyzed by enzymes is restricted as enzymes only have evolved to catalyze reactions that are physiologically relevant. Furthermore, enzymes have adapted to the direct (cellular) environment in which they have to function (e.g. operative at ambient temperature, resilient towards proteolysis, catalytic turnover rate should fit with metabolic enzyme partners). This excludes the existence of enzymes that do not fit within boundaries set by nature. It is a great challenge to go beyond these natural boundaries and develop methodologies to design ‘unnatural’ tailor-made enzymes. Ideally it should become possible to (re)design enzymes to convert pre-defined substrates. Such designer enzymes could theoretically exhibit unsurpassed catalytic properties and, obviously, will be of significant interest for industrial biotechnology. The OXYGREEN project aims at the design and construction of novel oxygenating enzymes (designer oxygenases) for the production of compounds that can be used in medicine, food and agriculture and the development of novel powerful and generic enzyme redesign tools for this purpose. The enzymes and whole-cell biocatalysts that will be developed should catalyze the specific incorporation of oxygen to afford synthesis of bioactive compounds in a selective and clean way, with minimal side products and with no use of toxic materials. For this, generic platform technologies (novel high-throughput methodology and methods for engineering dedicated host cells) will be developed that allow effective structure-inspired directed evolution of enzyme."



Projet Website

13 Participants partenaires