Rechercher des projets européens

Dynamic Interplay between Eukaryotic Chromosomes: Impact on Genome Stability (DICIG)
Date du début: 1 juin 2011, Date de fin: 31 mai 2017 PROJET  TERMINÉ 

The structure and role of the DNA molecule raise fascinating questions regarding its dynamics, i.e. not only the tri-dimensional reorganisation associated with functional events at short time-scale, but also the structural changes, i.e. rearrangements, that occur in the chromosome over generations. It is increasingly obvious that the physical properties of both the chromosomes and their environment the nucleoplasm, the nuclear periphery, cytoskeleton, etc. are playing important roles in the dynamic changes observed. For instance, we recently showed that chromosome movements during mid-prophase of meiosis in budding yeast result from a trans-acting force generated at the level of the global cytoskeleton network, suggesting that extranuclear mechanical trans-acting signals could also regulate chromosomal metabolism in other ways. Our objectives are to make important contributions to the understanding of the mechanical and functional interplay between the cytoskeleton, the nuclear periphery, and chromosomes through in vitro and in vivo interdisciplinary approaches. We will investigate three questions of fundamental importance: i) the potential transmission and function of mechanical forces from the cytoskeleton to chromatin during interphase, ii) the physical principles that govern chromosome reorganization under mechanical force in vitro, and iii) the global chromatin dynamics during the fundamental S phase and its impact on genome stability. We will use a combination of high-resolution imaging, micromanipulation, and high-throughput molecular techniques (chromosome conformation capture and ChIP-Seq) to reach our goals. Most of these studies will be performed in budding yeast, but will have repercussions in our understanding of higher eukaryotes metabolism.

Details