Rechercher des projets européens

Computer simulations of thermally excited molecules and materials by first principles (TEMM1P)
Date du début: 1 janv. 2012, Date de fin: 31 déc. 2015 PROJET  TERMINÉ 

With the rapid development of computational sciences and of high-performance computing, first principles computer simulations have become a standard for the simulation of processes in physics, chemistry, biology and materials science. Moreover, the quality of first principles methods, most of all of density-functional theory, reached recently that of experiments, which allows the prediction of new forms of condensed matter, including novel molecules and nanomaterials with specially designed building units. However, these simulations refer to the electronic ground state, while in reality and experiment the materials are exposed to elevated temperatures, where also the electronic structure should be considered to be thermally excited. We will develop, implement and validate methods to simulate processes at thermally elevated temperatures. Our target applications are the formation of fullerenes and endohedral fullerenes in arc discharge plasma, thermolysis of ammonia boranes, chemical reactions of oil sands cracking at high temperature and pressure, ion diffusion in clay-mineral nanotubes, and mass spectrometer chemistry including the formation of new molecules with untypical bonding properties and the chemical reaction of methane with late transition metal and rare earth ions, a hopeful way to produce molecular hydrogen from natural gas. All applications have in common that they occur at high temperature and partially high pressure, and hence require similar computational methods. With this proposal we would like to initiate a Transfer of Knowledge scheme where we will create synergies in developing these methods, implement them for their use in latest supercomputer facilities, and have well-trained personnel to be able to operate them in the individual workgroups. The Exchange Programme includes long-term stays of graduate students (ESR) as well as shorter-term stays of research staff (ER) and professors.

Coordinateur

Details

3 Participants partenaires