Up2Europe est un accélérateur d’idées pour des projets de coopération.
La plateforme Ma Région Sud fait partie de l'écosystème de Up2Europe qui permet de booster la coopération à un niveau supérieur!
Besoin d'aide ? La Région Sud vous accompagne
Laissez-vous guider par notre équipe d'experts ! Saisissez votre mail et nous reviendrons vers vous rapidement
Artificial intelligence, branching processes and c.. (ArSInformatiCa)
Artificial intelligence, branching processes and coalescent –
Searching the Information from a genetic Cornucopia
(ArSInformatiCa)
Date du début: 1 oct. 2012,
Date de fin: 30 sept. 2014
PROJET
TERMINÉ
The objective of the multidisciplinary ArSInformatiCa project is to reinforce the international dimension of a research career of European computer scientist by training him in complementary skills in a world-class research centre, the George R. Brown School of Engineering at William M. Rice University in Houston, USA. The research will be carried out in two fields of information sciences: artificial intelligence (in particular machine learning) and distributed computer simulations applied to retrieval meaningful information from the whole-genome-scale variation data produced by high throughput genotyping technologies. In particular, the interest will be given to inherited predisposition to complex genetic diseases, including autoimmune diseases and cancers. An extremely large amount of data from the currently launched 1000 Genomes Project and Cancer Genome Project, requires a development of new advanced information technologies for understanding these data. This is an important challenge for information sciences, which motivates the goal of the ArSInformatiCa project. The progress in machine learning will not be limited to genetic applications. Rather, the methods developed, will be verified by application to human/cancer genetics with a potential to benefit wider and general context of data mining in very large and multidimensional data repositories. An example is the development of applicant’s rule-based method known as quasi-dominant rough set approach. While this method will be primarily tested in search for signatures of natural selection at molecular level in genes involved in human familial cancers, it is expected to become a general machine learning approach. Having a clear perspective of a long-term collaboration between Rice University and European research institutions, the ArSInformatiCa project will also contribute to the excellence of the European Research Area by a research inspired by the project results and performed after its completion.
Accédez au prémier réseau pour la cooperation européenne
Se connecter
Bonjour, vous êtes sur la plateforme Région Sud Provence-Alpes-Côte d’Azur dédiée aux programmes thématiques et de coopération territoriale. Une équipe d’experts vous accompagne dans vos recherches de financements.
Contactez-nous !
Contactez la Région Sud Provence-Alpes-Côte d'Azur
Vous pouvez nous écrire en Anglais, Français et Italien