Rechercher des projets européens

Air-Sea Exchanges driven by Light (AIRSEA)
Date du début: 1 avr. 2012, Date de fin: 31 mars 2017 PROJET  TERMINÉ 

"The scientific motivation of this project is the significant presence of organic compounds at the surface of the ocean. They form the link between ocean biogeochemistry through the physico-chemical processes near the water-air interface with primary and secondary aerosol formation and evolution in the air aloft and finally to the climate impact of marine boundary layer aerosols. However, their photochemistry and photosensitizer properties have only been suggested and discussed but never fully addressed because they were beyond reach. This project suggests going significantly beyond this matter of fact by a combination of innovative tools and the development of new ideas.This project is therefore devoted to new laboratory investigations of processes occurring at the air sea interface to predict emission, formation and evolution of halogenated radicals and aerosols from this vast interface between oceans and atmosphere. It progresses from fundamental laboratory measurements, marine science, surface chemistry, photochemistry … and is therefore interdisciplinary in nature.It will lead to the development of innovative techniques for characterising chemical processing at the air sea interface (e.g., a multiphase atmospheric simulation chamber, a time-resolved fluorescence technique for characterising chemical processing at the air-sea interface). It will allow the assessment of new emerging ideas such as a quantitative description of the importance of photosensitized reactions in the visible at the air/sea interface as a major source of halogenated radicals and aerosols in the marine environment.This new understanding will impact on our ability to describe atmospheric chemistry in the marine environment which has strong impact on the urban air quality of coastal regions (which by the way represent highly populated regions ) but also on climate change by providing new input for global climate models."