Rechercher des projets européens

Advanced Antenna Architecture for THZ Sensing Instruments (AAATSI)
Date du début: 1 nov. 2011, Date de fin: 31 oct. 2016 PROJET  TERMINÉ 

The Tera-Hertz portion of the spectrum presents unique potentials for advanced applications. Currently the THz spectrum is revealing the mechanisms at the origin of our universe and provides the means to monitor the health of our planet via satellite based sensing of critical gases. Potentially time domain sensing of the THz spectrum will be the ideal tool for a vast variety of medical and security applications.Presently, systems in the THz regime are extremely expensive and consequently the THz spectrum is still the domain of only niche (expensive) scientific applications. The main problems are the lack of power and sensitivity. The wide unused THz spectral bandwidth is, herself, the only widely available resource that in the future can compensate for these problems. But, so far, when scientists try to really use the bandwidth, they run into an insurmountable physical limit: antenna dispersion. Antenna dispersion modifies the signal’s spectrum in a wavelength dependent manner in all types of radiation, but is particularly deleterious to THz signals because the spectrum is too wide and with foreseeable technology it cannot be digitized.The goal of this proposal is to introduce break-through antenna technology that will eliminate the dispersion bottle neck and revolutionize Time Domain sensing and Spectroscopic Space Science. Achieving these goals the project will pole vault THz imaging technology into the 21-th century and develop critically important enabling technologies which will satisfy the electrical engineering needs of the next 30 years and in the long run will enable multi Tera-bit wireless communications.In order to achieve these goals, I will first build upon two major breakthrough radiation mechanisms that I pioneered: Leaky Lenses and Connected Arrays. Eventually, ultra wide band imaging arrays constituted by thousands of components will be designed on the bases of the new theoretical findings and demonstrated.

Details