Rechercher des projets européens

Active Mechanisms of Cell Selection: From Cell Competition to Cell Fitness (CELLFITNESS)
Date du début: 1 juin 2014, Date de fin: 31 mai 2019 PROJET  TERMINÉ 

"The molecular mechanisms that mediate cell competition, cell fitness and cell selection is gaining interest. With innovative approaches, molecules and ground-breaking hypothesis, this field of research can help understand several biological processes such as development, cancer and tissue degeneration. The project has 3 clear and ambitious objectives: 1. We propose to identify all the key genes mediating cell competition and their molecular mechanisms. In order to reach this objective we will use data from two whole genome screens in Drosophila where we have identified 7 key genes. By the end of this CoG grant, we should have no big gaps in our knowledge of how slow dividing cells are recognised and eliminated in Drosophila. 2. In addition, we will explore how general the cell competition pathways are and how they can impact biomedical research, with a focus in cancer and tissue degeneration. The interest in cancer is based on experiments in Drosophila and mice where we and others have found that an active process of cell selection determines tumour growth. Preliminary results suggest that the pathways identified do not only play important roles in the elimination of slow dividing cells, but also during cancer initiation and progression. 3. We will further explore the role of cell competition in neuronal selection, specially during neurodegeneration, development of the retina and adult brain regeneration in Drosophila. This proposal is of an interdisciplinary nature because it takes a basic cellular mechanism (the genetic pathways that select cells within tissues) and crosses boundaries between different fields of research: development, cancer, regeneration and tissue degeneration. In this ERC CoG proposal, we are committed to continue our efforts from basic science to biomedical approaches. The phenomena of cell competition and its participating genes have the potential to discover novel biomarkers and therapeutic strategies against cancer and tissue degeneration."