Rechercher des projets européens

5 projets européens trouvés

Recherche sur 125080 projets européens

 TERMINÉ 
During S-phase newly synthesized “sister” DNA molecules become physically connected. This sister chromatid cohesion resists the pulling forces of the mitotic spindle and thereby enables the bi-orientation and subsequent symmetrical segregation of chromosomes. Cohesion is mediated by ring-shaped cohesin complexes, which are thought to entrap sister DNA molecules topologically. In mammalian cells, c ...
Voir le projet

 2

 TERMINÉ 
Cellular proteins are prone to misfolding and aggregation, particularly under harsh environmental conditions. To counteract this danger, all organisms from bacteria to humans evolved sophisticated protein quality control networks. The mechanisms employed in them tend to represent some of the most exciting biochemistry occurring in living cells.In Gram-positive bacteria, the key factors combating p ...
Voir le projet

 2

 TERMINÉ 
A major goal in biology is to understand how gene regulatory information is encoded by the human genome and how it defines different gene expression programs and cell types. Enhancers are genomic elements that control transcription, yet despite their importance, only a minority of enhancers are known and functionally characterized. In particular, their activity changes during cellular signalling o ...
Voir le projet

 2

 TERMINÉ 

Elucidating the molecular mechanism of cohesin-loading (Cohesin loading)

Date du début: 1 avr. 2017, Date de fin: 31 mars 2019,

The cohesin-complex mediates sister chromatid cohesion from S-phase until mitosis and is involved in the formation of higher-order chromatin structure. To fulfill these vital functions, cohesin is loaded and positioned in the genome by mechanisms that are only poorly understood. In vitro, loading of cohesin on DNA only requires ATP and a loading-complex formed by Scc2-Scc4, while loading in vivo o ...
Voir le projet

 2

 TERMINÉ 
The dynamic of neural computation is often studied in individual cells using inserted electrodes, or using low-resolution methods such as EEG. Functional fluorescent imaging has recently emerged as a powerful complementary tool that allows single-cell resolution of relatively large networks, opening a new regime to neuroscience. However, complex brains are generally opaque and can only be studied ...
Voir le projet

 2