Rechercher des projets européens

3D-Quantum Integrated Optical Simulation (3D-QUEST)
Date du début: 1 août 2012, Date de fin: 31 juil. 2017 PROJET  TERMINÉ 

"Quantum information was born from the merging of classical information and quantum physics. Its main objective consists of understanding the quantum nature of information and learning how to process it by using physical systems which operate by following quantum mechanics laws. Quantum simulation is a fundamental instrument to investigate phenomena of quantum systems dynamics, such as quantum transport, particle localizations and energy transfer, quantum-to-classical transition, and even quantum improved computation, all tasks that are hard to simulate with classical approaches. Within this framework integrated photonic circuits have a strong potential to realize quantum information processing by optical systems.The aim of 3D-QUEST is to develop and implement quantum simulation by exploiting 3-dimensional integrated photonic circuits. 3D-QUEST is structured to demonstrate the potential of linear optics to implement a computational power beyond the one of a classical computer. Such ""hard-to-simulate"" scenario is disclosed when multiphoton-multimode platforms are realized. The 3D-QUEST research program will focus on three tasks of growing difficulty.A-1. To simulate bosonic-fermionic dynamics with integrated optical systems acting on 2 photon entangled states.A-2. To pave the way towards hard-to-simulate, scalable quantum linear optical circuits by investigating m-port interferometers acting on n-photon states with n>2.A-3. To exploit 3-dimensional integrated structures for the observation of new quantum optical phenomena and for the quantum simulation of more complex scenarios.3D-QUEST will exploit the potential of the femtosecond laser writing integrated waveguides. This technique will be adopted to realize 3-dimensional capabilities and high flexibility, bringing in this way the optical quantum simulation in to new regime."

Coordinateur

Details